Loading [MathJax]/jax/output/CommonHTML/jax.js
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    AUTOMATIC DETECTION AND TRACKING OF HUMAN HEADS USING AN ACTIVE STEREO VISION SYSTEM

    A new head tracking algorithm for automatically detecting and tracking human heads in complex backgrounds is proposed. By using an elliptical model for the human head, our Maximum Likelihood (ML) head detector can reliably locate human heads in images having complex backgrounds and is relatively insensitive to illumination and rotation of the human heads. Our head detector consists of two channels: the horizontal and the vertical channels. Each channel is implemented by multiscale template matching. Using a hierarchical structure in implementing our head detector, the execution time for detecting the human heads in a 512×512 image is about 0.02 second in a Sparc 20 workstation (not including the time for image acquisition). Based on the ellipse-based ML head detector, we have developed a head tracking method that can monitor the entrance of a person, detect and track the person's head, and then control the stereo cameras to focus their gaze on this person's head. In this method, the ML head detector and the mutually-supported constraint are used to extract the corresponding ellipses in a stereo image pair. To implement a practical and reliable face detection and tracking system, further verification using facial features, such as eyes, mouth and nostrils, may be essential. The 3D position computed from the centers of the two corresponding ellipses is then used for fixation. An active stereo head has been used to perform the experiments and has demonstrated that the proposed approach is feasible and promising for practical uses.

  • articleNo Access

    A REVIEW OF WAVELET-BASED EDGE DETECTION METHODS

    Edges are prominent features in images. The detection and analysis of edges are key issues in image processing, computer vision and pattern recognition. Wavelet provides a powerful tool to analyze the local regularity of signals. Wavelet transform has been successfully applied to the analysis and detection of edges. A great number of wavelet-based edge detection methods have been proposed over the past years. The objective of this paper is to give a brief review of these methods, and encourage the research of this topic. In practice, an image is usually of multistructure edge, the identification of different edges, such as steps, curves and junctions play an important role in pattern recognition. In this paper, more attention is paid on the identification of different types of edges. We present the main idea and the properties of these methods.

  • articleNo Access

    Multiscale Region Projection Method to Discriminate Between Printed and Handwritten Text on Registration Forms

    Techniques to identify printed and handwritten text in scanned documents differ significantly. In this paper, we address the question of how to discriminate between each type of writing on registration forms. Registration-form documents consist of various type zones, such as printed text, handwriting, table, image, noise, etc., so segmenting the various zones is a challenge. We adopt herein an approach called “multiscale-region projection” to identify printed text and handwriting. An important aspect of our approach is the use of multiscale techniques to segment document images. A new set of projection features extracted from each zone is also proposed. The classification rules are mining and are used to discern printed text and table lines from handwritten text. The proposed system was tested on 11118 samples in two registration-form-image databases. Some possible measures of efficiency are computed, and in each case the proposed approach performs better than traditional methods.

  • articleNo Access

    Using Local Edge Pattern Descriptors for Edge Detection

    Edge detection is an active and critical topic in the field of image processing, and plays a vital role for some important applications such as image segmentation, pattern classification, object tracking, etc. In this paper, an edge detection approach is proposed using local edge pattern descriptor which possesses multiscale and multiresolution property, and is named varied local edge pattern (VLEP) descriptor. This method contains the following steps: firstly, Gaussian filter is used to smooth the original image. Secondly, the edge strength values, which are used to calculate the edge gradient values and can be obtained by one or more groups of VLEPs. Then, weighted fusion idea is considered when multiple groups of VLEP descriptors are used. Finally, the appropriate threshold is set to perform binarization processing on the gradient version of the image. Experimental results show that the proposed edge detection method achieved better performance than other state-of-the-art edge detection methods.

  • articleNo Access

    AIMHNet: An Attribute-Insensitive Multiscale Hourglass Network for Rain Streak and Raindrop Removal

    CNN-based methods have made great progress in single-image rain removal. Most recent methods improve performance by increasing the depth of the network. To fully extract local and global features while reducing inference time, we propose a top-to-down attribute-insensitive multiscale hourglass network for rain streak and raindrop removal. For the rain removal task, we expect that the constructed network can accurately identify the various attributes of the rain information characteristics of the small target. Considering the difference in the size, shape, direction and density of rain streak and raindrop, inspired by the performance of hourglass architecture to capture multiscale features in human pose estimation, we introduce an attribute-insensitive hourglass module to recognize the attributes of rain streak and raindrop in a unified framework. This feature extraction module could capture the characteristics of rain streak and raindrop with different attributes. This stacked hourglass blocks down-sample features and then up-samples them back to the original resolution based on discrete wavelet transform and inverse discrete wavelet transform. We perform extensive experiments on five synthetic and real-world de-raining datasets to validate the effectiveness of our proposed network on rain streak and raindrop removal. The qualitative and quantitative results show that our method is suitable for removing rain streak and raindrop in a unified framework. We present the results of generalization and ablation study for key components, we also report the accuracy of semantic segmentation after preprocessing with all rain removal methods. Our source code will be available on the GitHub: https://github.com/Ruini94/AIMHNet.