Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleOpen Access

    Microwave-induced thermoacoustic imaging with functional nanoparticles

    As an emerging hybrid imaging modality, microwave-induced thermoacoustic imaging (MTAI), using microwaves as the excitation source and ultrasonic signals as the information carrier for combining the characteristics of high contrast of electromagnetic imaging and high resolution of ultrasound imaging, has shown broad prospects in biomedical and clinical applications. The imaging contrast depends on the microwave-absorption coefficient of the endogenous imaged tissue and the injected MTAI contrast agents. With systemically introduced functional nanoparticles, MTAI contrast and sensitivity can be further improved, and enables visualization of biological processes in vivo. In recent years, functional nanoparticles for MTAI have been developed to improve the performance and application range of MTAI in biomedical applications. This paper reviews the recent progress of functional nanoparticles for MTAI and their biomedical applications. The challenges and future directions of microwave thermoacoustic imaging with functional nanoparticles in the field of translational medicine are discussed.

  • articleOpen Access

    Laser spectroscopy imaging technique coupled with nanomaterials for cancer diagnosis: A review

    Laser spectroscopic imaging techniques have received tremendous attention in the field of cancer diagnosis due to their high sensitivity, high temporal resolution, and short acquisition time. However, the limited tissue penetration of the laser is still a challenge for the in vivo diagnosis of deep-seated lesions. Nanomaterials have been universally integrated with spectroscopic imaging techniques for deeper cancer diagnosis in vivo. The components, morphology, and sizes of nanomaterials are delicately designed, which could realize cancer diagnosis in vivo or in situ. Considering the enhanced signal emitting from the nanomaterials, we emphasized their combination with spectroscopic imaging techniques for cancer diagnosis, like the surface-enhanced Raman scattering (SERS), photoacoustic, fluorescence, and laser-induced breakdown spectroscopy (LIBS). Applications of the above spectroscopic techniques offer new prospects for cancer diagnosis.