Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Using the fact that connections between vertices of a network often represent directed and weighted flows, we apply hydraulic principles to develop novel insights into network structure and growth. We develop a network model based on Bernoulli's principle and use it to analyze changes in network properties. Simulation results show that velocity of flow, resistance, fitness and existing connections in a system determine network connections of a vertex as well as overall network structure. We demonstrate how network structure is affected by changes in velocity and resistance, and how one vertex can monopolize connections within a network. Using Bernoulli's principle, we are able to independently reproduce key results in the network literature.