Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    SIMULATING NETWORK STRUCTURES USING BERNOULLI'S PRINCIPLE

    Using the fact that connections between vertices of a network often represent directed and weighted flows, we apply hydraulic principles to develop novel insights into network structure and growth. We develop a network model based on Bernoulli's principle and use it to analyze changes in network properties. Simulation results show that velocity of flow, resistance, fitness and existing connections in a system determine network connections of a vertex as well as overall network structure. We demonstrate how network structure is affected by changes in velocity and resistance, and how one vertex can monopolize connections within a network. Using Bernoulli's principle, we are able to independently reproduce key results in the network literature.