Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    COMPUTATIONAL STUDY OF TERNARY ALLOY NANOCLUSTER COMPOSITIONAL STRUCTURES: Ni–Cu–Rh VERSUS Ni–Cu–Pd

    The Free-energy Concentration Expansion Method (FCEM) was utilized for the prediction of compositional structures in Ni–Cu–Rh cubo-octahedron nanoclusters in comparison to recently reported Ni–Cu–Pd data. While both systems exhibit site-specific, sequentially competitive surface segregation (and resultant core separations), remarkable differences governed by the opposite heteronuclear effective interactions, were noted in the surface compositional patterns. Thus, at relatively low temperatures "mixed" Cu/Pd ordering takes place at the Ni–Cu–Pd cluster surface, whereas in the Ni–Cu–Rh cluster Cu and Ni populate separate low and high-coordinated surface sites, thus forming a kind of "demixed surface order". Dissimilarities in the temperature dependence are discussed in terms of the interplay of segregation and compositional order. Such findings may have implications in heterogeneous catalysis and other technologies based on highly dispersed alloyed particles.

  • articleNo Access

    NUCLEATION AND STRUCTURAL PROPERTIES OF NICKEL FILMS ELECTRODEPOSITED FROM, CHLORIDE AND SULFATE BATHS

    Nickel films electrodeposited from chloride and sulfate baths at pH 3.8 have been investigated. The influence of the plating baths on the electrochemical growth and the characteristics of nickel were studied by means of cyclic voltammetry, potentiostatic steps (chronoamperometry), atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. The electrocrystallization mechanism was analyzed using the Scharifker and Hills model. The nucleation mechanism was found to be progressive at -1.1 V versus SCE, while at elevated overpotentials (more negative than -1.2 V versus SCE) instantaneous nucleation behavior was obtained. AFM characterization of the deposits indicated that the baths composition influences greatly the morphology of the deposits. XRD analysis indicated polycrystalline growth of the Ni film with a preferred (111) orientation with the fcc structure for both baths. The Ni crystallite sizes are 19–31 nm for the sulfate bath and 14–33 nm for the chloride one.