Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • chapterFree Access

    Chapter 1: Distribution of Lithium/Nickel in Soil and Its Uptake by Plants

    The chapter deals with some important aspects of the relationship of lithium and nickel with the ecosystem, which consists mainly of soil, water, plants and air. Some aspects of lithium and nickel use in the energy industry are also mentioned. We begin by considering the fact that the metallic elements lithium and nickel, either alone or in the form of their chemical compounds, are currently considered potential energy materials whose applicability is increasing with the transition to the mass use of electricity and batteries for powering motor vehicles. Both lithium and nickel are commonly found in nature. Even in relatively low concentrations, their presence is very dangerous or even toxic to some animals and biological organisms. On the other hand, certain plants and animals are a natural part of ecosystems and are unable to survive with-out their presence because they are vital to them. This contradiction and its implications form the main content of this chapter. The most significant effects of lithium and nickel in the environment, particularly in soil, water and plant systems, are presented. The interconnectedness between soil, water and plants is shown in relation to each other. Some of the analytical methods used for the detection of lithium and nickel are also given. In addition, some specific results are presented, which are not intended to specify particular locations in the field, but rather to highlight the ability of researchers to monitor the presence of lithium and nickel in the environment and to create conditions for their removal and possible reuse.

  • chapterFree Access

    26: Oxidation, Hydrocarboxylation and Cross-Coupling Reactions Catalyzed by Transition-Metal Complexes with Macrocyclic and Related Open-Chain, Carbohydrazone and Carboxylate Ligands

    The catalytic functionalization of C–H, C–OH and C–C bonds belongs to the most important processes in nature and the industry. In nature, this process occurs via involvement of enzymes, effectively and selectively, usually with very high turnover numbers. The pivotal role in enzymatic activity is played by the metal center cofactors, which involve several bioavailable transition metals, such as, iron, copper, manganese and zinc. In the industry, bond functionalization requires the presence of metal catalysts; therefore, a bio-inspired design of metal catalysts is a challenging approach. The recent advances in the catalysis of industrially important reactions, namely the oxidation and hydrocarboxylation of alkanes, the oxidation of alcohols and C–C coupling are reported. Convenient, environmentally friendly methods are presented, and the role and efficacy of the various transition-metal (iron, copper, zinc, manganese, nickel, vanadium, palladium and cobalt) catalysts are explored.