Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    The effect of anisotropy on the traffic flow behavior: Investigation of the correlation created by a single node on two-lane roads

    In this paper, we have tried to point out the features of the correlation between the lanes of a two-lane road, created by the entry of this facility. For this purpose, we have adopted a quasi-one-dimensional system composed of a diverging node connecting two roads and where no lanes’ changing is allowed. Our study has highlighted the strong effect of a node. We have found that if we create a disturbance in one lane, a spontaneous symmetry breaking occurs in the whole system. In fact, a self-anisotropy is produced at the node, to which the system responds via a self-organization mechanism. Those results have urged us to investigate the anisotropy as an extrinsic parameter. By privileging one lane over the other at the node, we have been able to confirm that the system can always get self-organized and that three phases can be established: the symmetric high density phase, the asymmetric low density phase and the asymmetric phase of transition low density/high density. Finally, we have found that the system is strongly correlated when it is in a symmetric phase, and is not when in an asymmetric phase. This finding brought us to the assumption that the cross-correlation of the observables of a quasi-one-dimensional system can be considered as an order parameter that defines the phases’ transitions.

  • articleNo Access

    Multi-hop teleportation of N-qubit state via Bell states

    Multi-hop teleportation is a quantum teleportation scheme for transferring quantum states on a large scale. In this paper, a new multi-hop teleportation protocol is investigated for transferring arbitrary N-qubit states between M-neighbor nodes. In this scheme, intermediate nodes are connected with each other by symmetric entangled Bell states as quantum channels. First, one-hop teleportation of single-qubit, two-qubit and N-qubit states are introduced, then this method is generalized to two-hop and multi-hop teleportation for N-qubit. Also, we calculate the efficiency of this scheme.

  • articleNo Access

    On the Limit Cycles of the Polynomial Differential Systems with a Linear Node and Homogeneous Nonlinearities

    We consider the class of polynomial differential equations ẋ = λx + Pn(x, y), ẏ = μy + Qn(x, y) in ℝ2 where Pn(x, y) and Qn(x, y) are homogeneous polynomials of degree n > 1 and λ ≠ μ, i.e. the class of polynomial differential systems with a linear node with different eigenvalues and homogeneous nonlinearities. For this class of polynomial differential equations, we study the existence and nonexistence of limit cycles surrounding the node localized at the origin of coordinates.

  • articleNo Access

    THE IMPACT OF TIDAL ERRORS ON THE DETERMINATION OF THE LENSE–THIRRING EFFECT FROM SATELLITE LASER RANGING

    The general relativistic Lense–Thirring effect can be detected by means of a suitable combination of orbital residuals of the laser-ranged LAGEOS and LAGEOS II satellites. While this observable is not affected by the orbital perturbation induced by the zonal Earth solid and ocean tides, it is sensitive to those generated by the tesseral and sectorial tides. The assessment of their influence on the measurement of the parameter μLT, with which the gravitomagnetic effect is accounted for, is the goal of this paper. After simulating the combined residual curve by calculating accurately the mismodeling of the more effective tidal perturbations, it has been found that, while the solid tides affect the recovery of μLT at a level always well below 1%, for the ocean tides and the other long-period signals Δμ depends strongly on the observational period and the noise level: Δμtides ≃ 2% after seven years. The aliasing effect of K11=3 p=1 tide and SRP(4241) solar radiation pressure harmonic, with periods longer than four years, on the perigee of LAGEOS II yield to a maximum systematic uncertainty on μLT of less than 4% over different observational periods. The zonal 18.6-year tide does not affect the combined residuals.