Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    The effect of anisotropy on the traffic flow behavior: Investigation of the correlation created by a single node on two-lane roads

    In this paper, we have tried to point out the features of the correlation between the lanes of a two-lane road, created by the entry of this facility. For this purpose, we have adopted a quasi-one-dimensional system composed of a diverging node connecting two roads and where no lanes’ changing is allowed. Our study has highlighted the strong effect of a node. We have found that if we create a disturbance in one lane, a spontaneous symmetry breaking occurs in the whole system. In fact, a self-anisotropy is produced at the node, to which the system responds via a self-organization mechanism. Those results have urged us to investigate the anisotropy as an extrinsic parameter. By privileging one lane over the other at the node, we have been able to confirm that the system can always get self-organized and that three phases can be established: the symmetric high density phase, the asymmetric low density phase and the asymmetric phase of transition low density/high density. Finally, we have found that the system is strongly correlated when it is in a symmetric phase, and is not when in an asymmetric phase. This finding brought us to the assumption that the cross-correlation of the observables of a quasi-one-dimensional system can be considered as an order parameter that defines the phases’ transitions.