Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Evaluation of eavesdropping error-rates in higher-dimensional QKD system implemented using dynamic spatial modes

    Secure exchange of cryptographic keys is extremely important for any communication system where security and privacy of data is desirable. Although classical cryptographic algorithms provide computationally secure methods for secret key exchange, quantum key distribution (QKD) provides an extraordinary means to this end by guaranteeing unconditional security. Any malicious interception of communication by a man-in-the-middle on a QKD link immediately alerts sender and receiver by introducing an unavoidable error-rate. Higher-dimensional QKD protocols such as KMB09 exhibit higher eavesdropping error-rates with improved intrusion detection but their practical implementation is still awaited. In this paper, we present the design and implementation of KMB09 protocol using Laguerre–Gaussian orbital angular momentum to demonstrate and highlight the advantages of using dynamic spatial modes in QKD system. A complete error-rate analysis of KMB09 protocol implementation is presented with two different types of eavesdropping error-rates. Furthermore, we also demonstrate the decoy state method to show the robustness of the protocol against photon-number-splitting attack.