Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Single and coaxial electrospraying techniques are superior nanofabrication methods for nanomaterial production. These nanomaterials have the unique capability to manipulate various surfaces and bring diverse additional functionalities. The objectives of the present study are to produce poly(lactic acid) (PLA)/chitosan nanoparticles and investigate the synergy of nanosize effect with different morphology structures in terms of achieved functionality. The impact of ambient humidity on coating morphology was examined via a scanning electron microscope, field emission scanning electron microscope and dynamic light scattering for size measurements and dimensional characterization of nanoparticles. The obtained results indicate that electrosprayed PLA polymer shows a tendency to have a more distinct pore structure than electrosprayed chitosan polymer. Humidity has an increasing effect on particle size. Another finding is the relationship between hygroscopic characteristics of polymer with nanoparticle size, polydispersity, surface morphology and pore structure. Overall, these methods introduced high antibacterial activity obtainment on electrosprayed surfaces. Up to 99.99% antibacterial activity was accomplished against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria in regard to this study. The created surface layers also have the extensive potential of practicability for diversified kinds of surfaces and numerous combinations of polymers for multifunctional applications.