This paper reports a theoretical study on the reaction of propyl vinyl ether (PVE, CH3CH2CH2OCH=CH2) with OH radicals in the presence of O2 and NOx. The reaction pathway has been studied with the density functional theory (DFT/B3LYP) at the 6-31G* level. The total energies of all geometries are corrected at the MP2/6-311+G** level. The profile of the potential energy surface was constructed. The possible channels involved in the reaction were discussed. The results show that six product pathways are energetically feasible for the degradation of PVE initiated by OH radicals in the atmosphere. The main products for this degradation reaction are propyl formate, formaldehyde, and glycolic acid propyl ester in which propyl formate and formaldehyde are mainly from the OH addition to C5 atom.