Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Algebraic functional equations and completely faithful Selmer groups

    Let E be an elliptic curve — defined over a number field K — without complex multiplication and with good ordinary reduction at all the primes above a rational prime p ≥ 5. We construct a pairing on the dual p-Selmer group of E over any strongly admissible p-adic Lie extension K/K under the assumption that it is a torsion module over the Iwasawa algebra of the Galois group G = Gal(K/K). Under some mild additional hypotheses, this gives an algebraic functional equation of the conjectured p-adic L-function. As an application, we construct completely faithful Selmer groups in case the p-adic Lie extension is obtained by adjoining the p-power division points of another non-CM elliptic curve A.