Loading [MathJax]/jax/output/CommonHTML/jax.js
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Robust Authentication System with Privacy Preservation for Hybrid Deep Learning-Based Person Identification System Using Multi-Modal Palmprint, Ear, and Face Biometric Features

    Conventional biometric systems are vulnerable to a range of harmful threats and privacy violations, putting the users who have registered with them in grave danger. Therefore, there is a need to develop a Privacy-Preserving and Authenticating Framework for Biometric-based Systems (PPAF-BS) that allows users to access multiple applications while also protecting their privacy. There are various existing works on biometric-based systems, but most of them do not address privacy concerns. Conventional biometric systems require the storage of biometric data, which can be easily accessed by attackers, leading to privacy violations. Some research works have used differential privacy techniques to address this issue, but they have not been widely applied in biometric-based systems. The existing biometric-based systems have a significant privacy concern, and there is a lack of privacy-preserving techniques in such systems. Therefore, there is a need to develop a PPAF-BS that can protect the user’s privacy and maintain the system’s efficiency. The proposed method uses Hybrid Deep Learning (HDL) with palmprint, ear, and face biometric features for person identification. Additionally, Discrete Cosine Transform (DCT) feature transformation and Lagrange’s interpolation-based image transformation are used as part of the authentication scheme. Sensors are used to record three biometric traits: palmprint, ear, and face. The combination of biometric characteristics provides an accuracy of 96.4% for the 8×8 image size. The proposed LI-based image transformation lowers the original 512×512 pixels to an 8×8 hidden pattern. This drastically decreases the database size, thereby reducing storage needs. The proposed method offers a safe authentication system with excellent accuracy, a fixed-size database, and the privacy protection of multi-modal biometric characteristics without sacrificing overall system efficiency. The system achieves an accuracy of 96.4% for the 8×8 image size, and the proposed LI-based picture transformation significantly reduces the database size, which is a significant achievement in terms of storage requirements. Therefore, the proposed method can be considered an effective solution to the privacy and security concerns of biometric-based systems.

  • articleNo Access

    INTEGRATING SHAPE AND TEXTURE FOR HAND VERIFICATION

    This paper investigates the performance of a bimodal biometric system using fusion of shape and texture. We propose several new hand shape features that can be used to represent the hand shape and improve the performance for hand shape based user authentication. We also demonstrate the usefulness of Discrete Cosine Transform (DCT) coefficients for palmprint authentication. The score level fusion of hand shape and palmprint features using product rule achieves best performance as compared to Max or Sum rule. However the decisions from the Sum, Max, and Product rules can also be combined to further enhance the performance. Thus the fusion of score level decisions, from the multiple strategies, is proposed and investigated. The two hand shapes of an individual are anatomically similar. However, the palmprints from two hands can be combined to further improve performance and is demonstrated in this paper.

  • articleNo Access

    USER AUTHENTICATION USING FUSION OF FACE AND PALMPRINT

    This paper presents a new method of personal authentication using face and palmprint images. The facial and palmprint images can be simultaneously acquired by using a pair of digital camera and integrated to achieve higher confidence in personal authentication. The proposed method of fusion uses a feed-forward neural network to integrate individual matching scores and generate a combined decision score. The significance of the proposed method is more than improving performance for bimodal system. Our method uses the claimed identity of users as a feature for fusion. Thus the required weights and bias on individual biometric matching scores are automatically computed to achieve the best possible performance. The experimental results also demonstrate that Sum, Max, and Product rule can be used to achieve significant performance improvement when consolidated matching scores are employed instead of direct matching scores. The fusion strategy used in this paper outperforms even its existing facial and palmprint modules. The performance indices for personal authentication system using two-class separation criterion functions have been analyzed and evaluated. The method proposed in this paper can be extended for any multimodal authentication system to achieve higher performance.