Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

Bestsellers

Astronomical Spectroscopy
Astronomical Spectroscopy

3rd Edition
by Jonathan Tennyson
The Encyclopedia of Cosmology
The Encyclopedia of Cosmology

(In 4 Volumes)
Editor-in-chief: Giovanni G Fazio

 

  • articleNo Access

    UNPARTICLE AS A PARTICLE WITH ARBITRARY MASS

    The unparticle field operator can be expanded in terms of creation and destruction operators corresponding to particles with a continuous mass spectrum. Hence, when the four-momentum of an unparticle is measured, then the unparticle manifests as an ordinary particle with a definite (but arbitrary) mass.

  • articleNo Access

    DARK MATTER ANNIHILATION EXPLANATION FOR e± EXCESSES IN COSMIC RAY

    Recently data from PAMELA, ATIC, FERMI-LAT and HESS show that there are e± excesses in the cosmic ray energy spectrum. PAMELA shown excesses only in e+, but not in anti-proton spectrum. ATIC, FERMI-LAT and HESS shown excesses in e++e- spectrum, but the detailed shapes are different which requires future experimental observations to pin down the correct data set. Nevertheless a lot of efforts have been made to explain the observed e± excesses, and also why PAMELA only has excesses in e+ but not in anti-proton. In this brief review we discuss one of the most popular mechanisms to explain the data — the dark matter annihilation. It has long been known that about 23% of our universe is made of relic dark matter. If the relic dark matter was thermally produced, the annihilation rate is constrained resulting in the need of a large boost factor to explain the data. We will discuss in detail how a large boost factor can be obtained by the Sommerfeld and Breit–Wigner enhancement mechanisms. Some implications for particle physics model buildings will also be discussed.

  • articleNo Access

    Particle accelerator development: Selected examples

    About 30 years ago, I was among several students mentored by Professor Yang at Stony Brook to enter the field of particle accelerator physics. Since then, I have been fortunate to work on several major accelerator projects in USA and in China, guided and at times directly supported by Professor Yang. The field of accelerator physics is flourishing worldwide both providing indispensable tools for fundamental physics research and covering an increasingly wide spectrum of applications beneficial to our society.

  • articleNo Access

    Acoustic black hole in 2 + 1 dimensions as a particle accelerator

    In this paper, we have studied particle collision around a rotating acoustic black hole in 2 + 1 dimensions. This black hole is analog to a fluid flow in a draining bath tub with a sink. Center of mass energy for two-particle collision at the horizon of the rotating acoustic black hole is considered. There is a possibility of the two-mass collision to create infinite center of mass energy for certain fine tuning of the parameters of the theory.

  • articleNo Access

    ELECTRON/POSITRON EXCESSES IN THE COSMIC RAY SPECTRUM AND POSSIBLE INTERPRETATIONS

    The data collected by ATIC, PPB-BETS, FERMI-LAT and HESS all indicate that there is an electron/positron excess in the cosmic ray energy spectrum above ~100 GeV, although different instrumental teams do not agree on the detailed spectral shape. PAMELA also reported clearly the excessive feature of the fraction of positron above several GeV, but with no excess in antiprotons. Here we review the observational status and theoretical models of this interesting observational feature. We pay special attention to various physical interpretations proposed in the literature, including modified supernova remnant models for the e± background, new astrophysical sources, and new physics (the dark matter models). We suggest that although most models can make a case to interpret the data, with the current observational constraints the dark matter interpretations, especially those invoking annihilation, require much more exotic assumptions than some other astrophysical interpretations. Future observations may present some "smoking-gun" observational tests to differentiate different models and to identify the correct interpretation of the phenomenon.