Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The unparticle field operator can be expanded in terms of creation and destruction operators corresponding to particles with a continuous mass spectrum. Hence, when the four-momentum of an unparticle is measured, then the unparticle manifests as an ordinary particle with a definite (but arbitrary) mass.
Recently data from PAMELA, ATIC, FERMI-LAT and HESS show that there are e± excesses in the cosmic ray energy spectrum. PAMELA shown excesses only in e+, but not in anti-proton spectrum. ATIC, FERMI-LAT and HESS shown excesses in e++e- spectrum, but the detailed shapes are different which requires future experimental observations to pin down the correct data set. Nevertheless a lot of efforts have been made to explain the observed e± excesses, and also why PAMELA only has excesses in e+ but not in anti-proton. In this brief review we discuss one of the most popular mechanisms to explain the data — the dark matter annihilation. It has long been known that about 23% of our universe is made of relic dark matter. If the relic dark matter was thermally produced, the annihilation rate is constrained resulting in the need of a large boost factor to explain the data. We will discuss in detail how a large boost factor can be obtained by the Sommerfeld and Breit–Wigner enhancement mechanisms. Some implications for particle physics model buildings will also be discussed.
About 30 years ago, I was among several students mentored by Professor Yang at Stony Brook to enter the field of particle accelerator physics. Since then, I have been fortunate to work on several major accelerator projects in USA and in China, guided and at times directly supported by Professor Yang. The field of accelerator physics is flourishing worldwide both providing indispensable tools for fundamental physics research and covering an increasingly wide spectrum of applications beneficial to our society.
In this paper, we have studied particle collision around a rotating acoustic black hole in 2 + 1 dimensions. This black hole is analog to a fluid flow in a draining bath tub with a sink. Center of mass energy for two-particle collision at the horizon of the rotating acoustic black hole is considered. There is a possibility of the two-mass collision to create infinite center of mass energy for certain fine tuning of the parameters of the theory.