Please login to be able to save your searches and receive alerts for new content matching your search criteria.
With the demonstration of direct electron transfer between the redox active prosthetic group, flavin adenine dinucleotide (FAD), of glucose oxidase (GOx) and single-walled carbon nanotubes (SWCNT), there has been growing interest in the fabrication of CNT-enzyme supramolecular constructs that control the placement of SWCNTs within the tunneling distance of co-factors for enhanced electron transfer efficiency in generation-3 biosensors and advanced biofuel cells. These conjugate systems raise a series of questions such as: which peptide sequences within the enzymes have high affinity for the SWCNTs? And, are these high affinity sequences likely to be in the vicinity of the redox-active co-factor to allow for direct electron transfer? Phage display has recently been used to identify specific peptide sequences that have high affinity for SWCNTs. Molecular dynamics simulations were performed to study the interactions of five discrete peptides with (16,0) SWCNT in explicit water as well as with graphene. From the progression of the radius of gyration, Rg, the peptides studied were concertedly adsorbed to both the SWCNT and graphene. Peptide properties calculated using individual amino acid values, such as hydrophobicity indices, did not correlate with the observed adsorption behavior as quantified by Rg, indicating that the adsorption behavior of the peptide was not based on the individual amino acid residues. However, the Rg values, reflective of the physicochemical embrace of the surface (SWCNT or graphene) had a strong positive correlation with the solubility parameter, indicating concerted, cooperative interaction of peptide segments with the materials. The end residues appear to dominate the progression of adsorption regardless of character. Sequences identified by phage display share some homology with key enzymes (GOx, lactate oxidase and laccase) used in biosensors and enzyme-based biofuel cells. These analogous sequences appear to be buried deep within the shell of fully folded proteins and as such are expected to be close to the redox-active prosthetic group.