Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    FUNDAMENTALS OF WHOLE BRAIN EMULATION: STATE, TRANSITION AND UPDATE REPRESENTATIONS

    Whole brain emulation aims to re-implement functions of a mind in another computational substrate with the precision needed to predict the natural development of active states in as much as the influence of random processes allows. Furthermore, brain emulation does not present a possible model of a function, but rather presents the actual implementation of that function, based on the details of the circuitry of a specific brain. We introduce a notation for the representations of mind state, mind transition functions and transition update functions, for which elements and their relations must be quantified in accordance with measurements in the biological substrate. To discover the limits of significance in terms of the temporal and spatial resolution of measurements, we point out the importance of brain region and task specific constraints, as well as the importance of in-vivo measurements. We summarize further problems that need to be addressed.

  • articleNo Access

    EXPERIMENTAL RESEARCH IN WHOLE BRAIN EMULATION: THE NEED FOR INNOVATIVE IN VIVO MEASUREMENT TECHNIQUES

    Whole brain emulation aims to re-implement functions of a mind in another computational substrate by carefully emulating the function of fundamental components, and by copying the connectivity between those components. The precision with which this is done must enable prediction of the natural development of active states. To accomplish this, in vivo measurements at large scale and high resolution are critically important. We propose a set of requirements for these empirical measurements. We then outline general methods leading to acquisition of a structural and functional connectome, and to the characterization of responses at large scale and high resolution. Finally, we describe two new project developments that tackle the problem of functional recording in vivo, namely the "molecular ticker-tape" and the integrated-circuit "Cyborcell".