Please login to be able to save your searches and receive alerts for new content matching your search criteria.
We model continuous-time information flows generated by a number of information sources that switch on and off at random times. By modulating a multi-dimensional Lévy random bridge over a random point field, our framework relates the discovery of relevant new information sources to jumps in conditional expectation martingales. In the canonical Brownian random bridge case, we show that the underlying measure-valued process follows jump-diffusion dynamics, where the jumps are governed by information switches. The dynamic representation gives rise to a set of stochastically-linked Brownian motions on random time intervals that capture evolving information states, as well as to a state-dependent stochastic volatility evolution with jumps. The nature of information flows usually exhibits complex behavior, however, we maintain analytic tractability by introducing what we term the effective and complementary information processes, which dynamically incorporate active and inactive information, respectively. As an application, we price a financial vanilla option, which we prove is expressed by a weighted sum of option values based on the possible state configurations at expiry. This result may be viewed as an information-based analogue of Merton’s option price, but where jump-diffusion arises endogenously. The proposed information flows also lend themselves to the quantification of asymmetric informational advantage among competitive agents, a feature we analyze by notions of information geometry.
Large ensembles of points with Coulomb interactions arise in various settings of condensed matter physics, classical and quantum mechanics, statistical mechanics, random matrices and even approximation theory, and give rise to a variety of questions pertaining to calculus of variations, Partial Differential Equations and probability. We will review these as well as “the mean-field limit” results that allow to derive effective models and equations describing the system at the macroscopic scale. We then explain how to analyze the next order beyond the mean-field limit, giving information on the system at the microscopic level. In the setting of statistical mechanics, this allows for instance to observe the effect of the temperature and to connect with crystallization questions.