Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  Bestsellers

Bestsellers

Linear Algebra and Optimization with Applications to Machine Learning
Linear Algebra and Optimization with Applications to Machine Learning

Volume I: Linear Algebra for Computer Vision, Robotics, and Machine Learning
by Jean Gallier and Jocelyn Quaintance
Linear Algebra and Optimization with Applications to Machine Learning
Linear Algebra and Optimization with Applications to Machine Learning

Volume II: Fundamentals of Optimization Theory with Applications to Machine Learning
by Jean Gallier and Jocelyn Quaintance

 

  • articleNo Access

    Micro photosynthetic power cell for power generation from photosynthesis of algae

    TECHNOLOGY01 Jun 2015

    Devices such as solar and fuel cells have been studied for many decades and noticeable improvements have been achieved. This paper proposes a Micro Photosynthetic Power Cell (μPSC) as an alternative energy-harvesting device based on photosynthesis of blue-green algae. The effect of important biodesign parameters on the performance of the device, such as no-load performance and voltage–current (V–I) characteristics, were studied. Open-circuit voltage as high as 993 mV was measured while a peak power of 175.37 μW was obtained under an external load of 850 Ω. The proposed μPSC device could produce a power density of 36.23 μW/cm2, voltage density of 80 mV/cm2 and current density of 93.38 μA/cm2 under test conditions.

  • articleNo Access

    Responsive filtration membranes by polymer self-assembly

    TECHNOLOGY01 Dec 2016

    Membrane technologies are essential for water treatment, bioprocessing and chemical manufacturing. Stimuli-responsive membranes respond to changes in feed conditions (e.g., temperature, pH) or external stimuli (e.g., magnetic field, light) with a change in performance parameters (permeability, selectivity). This enables new functionalities such as tunable performance, self-cleaning and smart-valve behavior. Polymer self-assembly is a crucial tool for manufacturing such membranes using scalable methods, enabling easier commercialization. This review surveys approaches to impart stimuli responsive behavior to membrane filters using polymer self-assembly.

  • chapterNo Access

    Polymer flooding sweep efficiency calculation method and main control factor analysis

    It is the main mechanism of enhancing oil recovery that polymer can increase the sweep efficiency. The methods for calculating polymer flooding sweep efficiency are laboratory experiment method, empirical formula method and seepage mechanical method. With the development of numerical simulation technology, in the exploitation of oil and gas field, numerical simulation technology has become a core technology. But now there is still not a polymer flooding sweep efficiency calculation method using streamline. This paper established compositional numerical simulation seepage equation group, and solved by streamline method. A new method is proposed for calculating polymer flooding sweep efficiency using streamline data field. After comparison with the electric simulation results and analytical formula results, it is proved that the method is accurate and reliable. Using the actual data of oilfield, polymer flooding sweep efficiency is analyzed, the main factors affecting polymer flooding sweep efficiency is obtained, and puts forward some suggestions on the injection of polymer.

  • chapterNo Access

    A Micro Pressure Sensor with SU-8 Polymer

    This paper investigated novel wireless RF pressure sensor fabricated with SU-8 polymer. To achieve highly simplified fabrication processes and designs for high-reliable operation, a passive wireless sensors were researched. SU-8 polymer-based micro pressure sensor was fabricated by micro-electro-mechenical system (MEMS) based batch process. The sensor consists of an inductor (L) interconnected with pressure-variable capacitor (C) to form a LC resonant circuit. Fabricated devices measure 4 × 3 mm2 in size and houses 9 turns of Cu electro-plated 100 nH coil. In this system, RF signal was transmitted from external antenna to the fabricated LC resonator. By detecting this abrupt resonant frequency shift of the fabricated device, the pressure change of the device can be measured by wireless method.