Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Preparative-scale purification of petroleum vanadyl porphyrins by sulfuric acid loaded macroporous silica

    The practical potential of petroleum porphyrins still remains underestimated because of the absence of satisfactory simple and effective methods for their isolation in pure form. Our work aims to provide a solution for this problem via use of sulfuric acid loaded macroporous silica as an unprecedentedly effective adsorbent for deep petroporphyrin purification. Using chromatographic columns of reduced volume (4 cm3), a series of experiments on optimization of chromatographic conditions for silica-based sulfocationite were carried out. As a source of petroleum porphyrins, the primary concentrates of vanadyl porphyrins isolated on silica gel column from DMF extracts of heavy oil asphaltenes have been used. UV-vis and MALDI-TOF mass-spectrometric methods were employed for vanadyl porphyrin analysis and identification. We established that in a narrow range of water and acid content equal to 25 and 15 wt.%, respectively, silica-based sulfocationite becomes able to retain a bulk of polar petroleum components with exception of porphyrins, which thus leave the column first. A preparative-scale purification of vanadyl porphyrins by the sulfocationite-based method was performed for the first time and 18.5 mg of excellently pure product were obtained. Considering the extremely simple preparation and excellent purification performance of our novel sulfocationite, it could greatly facilitate access to high-purity petroleum porphyrins.