Mn co-precipitation method combined with Raman spectroscopy were used to determine trace heavy metals (copper, zinc, cadmium and lead) in water sample. Different concentrations of heavy metals including copper, zinc, cadmium and lead in water samples were separated and enriched by Mn2+-phen-SCN- ternary complex co-precipitation procedure. The Raman spectra of co-precipitation sediments were collected using confocal micro-Raman spectrometry. Different preprocessing treatments and regression calibration methods were compared. The best models using partial least squares regression (PLS) of copper, zinc, cadmium and lead were built with a correlation coefficient of prediction (Rp) of 0.979, 0.964, 0.956 and 0.972, respectively, and the root mean square error of prediction (RMSEP) of 6.587, 9.046, 9.998 and 7.751 μg/kg, respectively. The co-precipitation procedure combined with Raman spectroscopy method are feasible to detect the amount of heavy metals in water.