Please login to be able to save your searches and receive alerts for new content matching your search criteria.
We consider a random matrix whose entries are independent Gaussian variables taking values in the field of quaternions with variance 1/n. Using logarithmic potential theory, we prove the almost sure convergence, as the dimension n goes to infinity, of the empirical distribution of the right eigenvalues towards some measure supported on the unit ball of the quaternions field. Some comments on more general Gaussian quaternionic random matrix models are also made.
We establish a few properties of eigenvalues and eigenvectors of the quaternionic Ginibre ensemble (QGE), analogous to what is known in the complex Ginibre case (see [7, 11, 14]). We first recover a version of Kostlan’s theorem that was already at the heart of an argument by Rider [1], namely, that the set of the squared radii of the eigenvalues is distributed as a set of independent gamma variables. Our proof technique uses the De Bruijn identity and properties of Pfaffians; it also allows to prove that the high powers of these eigenvalues are independent. These results extend to any potential beyond the Gaussian case, as long as radial symmetry holds; this includes for instance truncations of quaternionic unitary matrices, products of quaternionic Ginibre matrices, and the quaternionic spherical ensemble.
We then study the eigenvectors of quaternionic Ginibre matrices. Angles between eigenvectors and the matrix of overlaps both exhibit some specific features that can be compared to the complex case. In particular, we compute the distribution and the limit of the diagonal overlap associated to an eigenvalue that is conditioned to be at the origin. This complements a recent study of overlaps in quaternionic ensembles by Akemann, Förster and Kieburg [1, 2].