Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Proteins and RNA are biological macromolecules built from linear polymers. The process by which they fold into compact, well-defined, three-dimensional architectures to perform their functional tasks is still not well understood. It can be visualized by Brownian motion of an ensemble of molecules through a rugged energy landscape in search of an energy minimum corresponding to the native state. To explore the conformational energy landscape of small RNAs, single pair Förster resonance energy transfer (spFRET) experiments on solutions as well as on surface-immobilized samples have provided new insights. In this review, we focus on our recent work on two FRET-labeled small RNAs, the Diels-Alderase (DAse) ribozyme and the human mitochondrial tRNALys. For both RNAs, three different conformational states can be distinguished, and the associated mean FRET efficiencies provide clues about their structural properties. The systematic variation of their free energies with the concentration of Mg2+ counterions was analyzed quantitatively by using a thermodynamic model that separates conformational changes from Mg2+ binding. Furthermore, time-resolved spFRET studies on immobilized DAse reveal slow interconversions between intermediate and folded states on the time scale of ~ 100 ms. The quantitative data obtained from spFRET experiments may likely assist in the further development of theories and models addressing the folding dynamics and (counterion-dependent) energetics of RNA molecules.