Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Based on temperature and rainfall recorded at 34 meteorological stations in Bangladesh during 1989–2018, the trends of yearly average maximum and minimum temperatures have been found to be increasing at the rates of 0.025∘C and 0.018∘C per year. Analysis of seasonal average maximum temperature showed increasing trend for all seasons except the late autumn season. The increasing trend was particularly significant for summer, rainy and autumn seasons. Seasonal average minimum temperature data also showed increasing trends for all seasons. The trend of yearly average rainfall has been found to be decreasing at a rate of 0.014mm per year in the same period; especially, for most of the meteorological stations the rainfall demonstrates an increasing trend for rainy season and a decreasing trend in the winter season. It means that in Bangladesh dry periods became drier and wet periods became wetter.
As one of the poorest countries in the world, agriculture is Bangladesh’s economic pillar, leading to Bangladesh’s economy becoming vulnerable to global warming. The generation of high-resolution climate predictions in Bangladesh can help to reduce the huge damage and losses inflicted by disasters linked to climate. The statistical downscaling model (SDSM) is the most widely used software on robust climate downscaling and prediction analysis. In this study, by using the SDSM model, we established the statistical relationship between observed climate data in Bangladesh and the large-scale low-resolution NCEP data and used three statistical indicators to evaluate the prediction performance of the SDSM software. Our results show that the SDSM software is more suitable for forecasting humidity/temperature in Bangladesh than rainfall.