Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Impacts of transpiration of agricultural crops and seeding on rainfall: Implications from a mathematical model

    As the source of replenishment, rainfall has an extensive impact because its variability shapes biologically efficient pulses of soil moisture recharge across layers from rainfall events. In this paper, a mathematical model is proposed to explore the importance of transpiration from agricultural crops and aerosols on the pattern of rainfall. For the system without seeding, the simulation results show destabilizing roles of parameters related to formation of cloud drops due to transpiration of agricultural crops, formation of raindrops due to cloud drops and growth of agricultural crops due to rain. The model without seeding is extended to its stochastic counterpart to encapsulate the uncertainty observed in some important parameters. We observe the variability in the system’s variables and found their distributions at certain fixed times, which explore the importance of stochasticity in the system. Our findings show that transpiration through agricultural crops plays an important role in cloud formation, and thus, affects the effectiveness of different rainfall events. Moreover, the combined actions of transpiration and seeding are much more beneficial in producing rain. Finally, we see the behavior of system by considering seasonal variations of some rate parameters.