Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    NOISE-BASED LOGIC: WHY NOISE? A COMPARATIVE STUDY OF THE NECESSITY OF RANDOMNESS OUT OF ORTHOGONALITY

    Although noise-based logic shows potential advantages of reduced power dissipation and the ability of large parallel operations with low hardware and time complexity the question still persist: Is randomness really needed out of orthogonality? In this Letter, after some general thermodynamical considerations, we show relevant examples where we compare the computational complexity of logic systems based on orthogonal noise and sinusoidal signals, respectively. The conclusion is that in certain special-purpose applications noise-based logic is exponentially better than its sinusoidal version: Its computational complexity can be exponentially smaller to perform the same task.

  • articleNo Access

    Randomness and Non-Locality

    The concepts of randomness and non-locality are intimately intertwined outcomes of randomly chosen measurements over entangled systems exhibiting non-local correlations are, if we preclude instantaneous influence between distant measurement choices and outcomes, random. In this paper, we survey some recent advances in the knowledge of the interplay between these two important notions from a quantum information science perspective.