Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Maps on random hypergraphs and random simplicial complexes

    Let L be a simplicial complex. In this paper, we study random sub-hypergraphs and random sub-complexes of L. By considering the minimal complex that a sub-hypergraph can be embedded in and the maximal complex that can be embedded in a sub-hypergraph, we define some maps on the space of probability functions on sub-hypergraphs of L. We study the compositions of these maps as well as their actions on the space of probability functions.

  • articleNo Access

    Random hypergraphs, random simplicial complexes and their Künneth-type formulae

    Random hypergraphs and random simplicial complexes on finite vertices were studied by [M. Farber, L. Mead and T. Nowik, Random simplicial complexes, duality and the critical dimension, J. Topol. Anal.41(1) (2022) 1–32]. The map algebra on random sub-hypergraphs of a fixed simplicial complex, which detects relations between random sub-hypergraphs and random simplicial sub-complexes, was studied by the authors of this paper. In this paper, we study the map algebra on random sub-hypergraphs of a fixed hypergraph. We give some algorithms generating random hypergraphs and random simplicial complexes by considering the actions of the map algebra on the space of probability distributions. We prove some Künneth-type formulae for random hypergraphs and random simplicial complexes on finite vertices.