Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

Bestsellers

Spinach on the Ceiling
Spinach on the Ceiling

The Multifaceted Life of a Theoretical Chemist
by Martin Karplus
Women in Their Element
Women in Their Element

Selected Women's Contributions to the Periodic System
edited by Annette Lykknes and Brigitte Van Tiggelen
The Periodic Table
The Periodic Table

Past, Present, and Future
by Geoff Rayner-Canham

 

  • chapterNo Access

    ADVANCED OPTICAL FUZING TECHNOLOGY

    We are developing a robust, compact, and affordable photonic proximity sensor for munition fuze applications. Successful implementation of this sensor will provide a new capability for direct fire applications. The photonic component development exploits pioneering work and unique expertise at ARDEC, ARL, and Sandia National Laboratories by combining key optoelectronic technologies to design and demonstrate components for this fuzing application [Ruff, et al. 1994; Stann, et al. 1996; Simonis, et al. 2000; Liu, et al. 2000]. The technologies employed in the optical fuze design are vertical cavity surface-emitting lasers (VCSELs), the p-i-n or metal-semiconductor-metal (MSM) photodetectors, and miniature lenses optics. This work will culminate in a robust, fully integrated, g-hardened component design suitable for proximity fuzing applications. This compact sensor will replace costly assemblies that are based on discrete lasers, photodetectors, and bulk optics. It will be mass manufacturable and impart huge savings for such applications. The specific application under investigation is for gun-fired munitions. Nevertheless, numerous civilian uses exist for this proximity sensor in automotive, robotics and aerospace applications. This technology is also applicable to robotic ladar and short-range 3-D imaging.