Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    A Meta-Algorithm for Improving Top-N Prediction Efficiency of Matrix Factorization Models in Collaborative Filtering

    Matrix factorization models often reveal the low-dimensional latent structure in high-dimensional spaces while bringing space efficiency to large-scale collaborative filtering problems. Improving training and prediction time efficiencies of these models are also important since an accurate model may raise practical concerns if it is slow to capture the changing dynamics of the system. For the training task, powerful improvements have been proposed especially using SGD, ALS, and their parallel versions. In this paper, we focus on the prediction task and combine matrix factorization with approximate nearest neighbor search methods to improve the efficiency of top-N prediction queries. Our efforts result in a meta-algorithm, MMFNN, which can employ various common matrix factorization models, drastically improve their prediction efficiency, and still perform comparably to standard prediction approaches or sometimes even better in terms of predictive power. Using various batch, online, and incremental matrix factorization models, we present detailed empirical analysis results on many large implicit feedback datasets from different application domains.