Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Recommender systems based on matrix factorization and the properties of inferred social networks

    Recommender Systems (RS) are a vital part of companies with an active participation on the web. These companies require strategies that allow them to take advantage of product ratings from users in order to provide future recommendations to other users. In the last decade, several algorithms have been developed for movie recommendation, with Matrix Factorization algorithm being one of the most popular algorithms. Our approach is to evaluate the performance of this recommendation algorithm in scenarios where underlying social networks, which characterize certain types of interactions between users, can be inferred. In particular, the MovieLens dataset is used, which consists of approximately 100,000 ratings by 671 users on 9066 movies, during the period from 29 March 1996 to 24 September 2018.