Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

SEARCH GUIDE  Download Search Tip PDF File

  • articleFree Access

    QUANTITATIVE EVALUATION OF RETINAL TUMOR VOLUME IN MOUSE MODEL OF RETINOBLASTOMA BY USING ULTRA HIGH-RESOLUTION OPTICAL COHERENCE TOMOGRAPHY

    An ultra high resolution spectral-domain optical coherence tomography (SD-OCT) together with an advanced animal restraint and positioning system was built for noninvasive non-contact in vivo three-dimensional imaging of rodent models of ocular diseases. The animal positioning system allowed the operator to rapidly locate and switch the areas of interest on the retina. This function together with the capability of precise spatial registration provided by the generated OCT fundus image allows the system to locate and compare the same lesion (retinal tumor in the current study) at different time point throughout the entire course of the disease progression. An algorithm for fully automatic segmentation of the tumor boundaries and calculation of tumor volume was developed. The system and algorithm were successfully applied to monitoring retinal tumor growth quantitatively over time in the LHBETATAG mouse model of retinoblastoma.

  • articleFree Access

    INTRINSIC OPTICAL SIGNAL IMAGING OF RETINAL ACTIVITY IN FROG EYE

    Using a near-infrared (NIR) light flood-illumination imager equipped with a high-speed (120 Hz) CCD camera, we demonstrated optical imaging of stimulus-evoked retinal activity in isolated, but intact, frog eye. Both fast and slow transient intrinsic optical signals (IOSs) were observed. Fast optical response occurred immediately after the stimulus onset, could reach peak magnitude within 100 ms, and correlated tightly with ON and OFF edges of the visible light stimulus; while slow optical response lasted a relatively long time (many seconds). High-resolution images revealed both positive (increasing) and negative (decreasing) IOSs, and dynamic optical change at individual CCD pixels could often exceed 10% of the background light intensity. Our experiment on isolated eye suggests that further development of fast, high (sub-cellular) resolution fundus imager will allow robust detection of fast IOSs in vivo, and thus allow noninvasive, three-dimensional evaluation of retinal neural function.

  • articleOpen Access

    A REVIEW OF RETINAL PROSTHESIS APPROACHES

    Age-related macular degeneration and retinitis pigmentosa are two of the most common diseases that cause degeneration in the outer retina, which can lead to several visual impairments up to blindness. Vision restoration is an important goal for which several different research approaches are currently being pursued. We are concerned with restoration via retinal prosthetic devices. Prostheses can be implemented intraocularly and extraocularly, which leads to different categories of devices. Cortical Prostheses and Optic Nerve Prostheses are examples of extraocular solutions while Epiretinal Prostheses and Subretinal Prostheses are examples of intraocular solutions. Some of the prostheses that are successfully implanted and tested in animals as well as humans can restore basic visual functions but still have limitations. This paper will give an overview of the current state of art of Retinal Prostheses and compare the advantages and limitations of each type. The purpose of this review is thus to summarize the current technologies and approaches used in developing Retinal Prostheses and therefore to lay a foundation for future designs and research directions.