Please login to be able to save your searches and receive alerts for new content matching your search criteria.
We consider a two- or three-dimensional time-dependent diffusion–convection–reaction problem and its discretization by the method of characteristics and standard finite elements. We perform the a posteriori error analysis of this discretization and prove optimal error estimates, which lead to an efficient adaptivity strategy both for the time step and the spatial mesh. The estimates are robust with respect to the ratios of the diffusion to the reaction or convection. Some numerical experiments support the theoretical results.
In this paper, we develop approximation error estimates as well as corresponding inverse inequalities for B-splines of maximum smoothness, where both the function to be approximated and the approximation error are measured in standard Sobolev norms and semi-norms. The presented approximation error estimates do not depend on the polynomial degree of the splines but only on the grid size. We will see that the approximation lives in a subspace of the classical B-spline space. We show that for this subspace, there is an inverse inequality which is also independent of the polynomial degree. As the approximation error estimate and the inverse inequality show complementary behavior, the results shown in this paper can be used to construct fast iterative methods for solving problems arising from isogeometric discretizations of partial differential equations.
In this paper, we consider isogeometric discretizations of the Poisson model problem, focusing on high polynomial degrees and strong hierarchical refinements. We derive a posteriori error estimates by equilibrated fluxes, i.e. vector-valued mapped piecewise polynomials lying in the H(div) space which appropriately approximate the desired divergence constraint. Our estimates are constant-free in the leading term, locally efficient, and robust with respect to the polynomial degree. They are also robust with respect to the number of hanging nodes arising in adaptive mesh refinement employing hierarchical B-splines, though not with respect to the smoothness and support overlaps. Two partitions of unity are designed, one with larger supports corresponding to the mapped splines, and one with small supports corresponding to mapped piecewise multilinear finite element hat basis functions. The equilibration is only performed on the small supports, avoiding the higher computational price of equilibration on the large supports or even the solution of a global system. Thus, the derived estimates are also as inexpensive as possible. An abstract framework for such a setting is developed, whose application to a specific situation only requests a verification of a few clearly identified assumptions. Numerical experiments illustrate the theoretical developments.