Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleOpen Access

    BREAST LESION SEGMENTATION AND CLASSIFICATION USING U-NET SALIENCY ESTIMATION AND EXPLAINABLE RESIDUAL CONVOLUTIONAL NEURAL NETWORK

    Fractals25 Nov 2024

    Breast cancer (BrC) is one of the most common causes of death among women worldwide. Images of the breast (mammography or ultrasound) may show an anomaly that represents early indicators of BrC. However, accurate breast image interpretation necessitates labor-intensive procedures and highly skilled medical professionals. As a second opinion for the physician, deep learning (DL) tools can be useful for the diagnosis and classification of malignant and benign lesions. However, due to the lack of interpretability of DL algorithms, it is not easy to understand by experts as to how to predict a label. In this work, we proposed multitask U-Net Saliency estimation and DL model-based breast lesion segmentation and classification using ultrasound images. A new contrast enhancement technique is proposed to improve the quality of original images. After that, a new technique was proposed called UNET-Saliency map for the segmentation of breast lesions. Simultaneously, a MobileNetV2 deep model is fine-tuned with additional residual blocks and trained from scratch using original and enhanced images. The purpose of additional blocks is to reduce the number of parameters and better learning of ultrasound images. Training is performed from scratch and extracted features from the deeper layers of both models. In the later step, a new cross-entropy controlled sine-cosine algorithm is developed and selected best features. The main purpose of this step is the reduction of irrelevant features for the classification phase. The selected features are fused in the next step by employing a serial-based Manhattan Distance (SbMD) approach and classified the resultant vector using machine learning classifiers. The results indicate that a wide neural network (W-NN) obtained the highest accuracy of 98.9% and sensitivity rate of 98.70% on the selected breast ultrasound image dataset. The comparison of the proposed method accuracy is conducted with state-of-the-art (SoArt) techniques which show the improved performance.