Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    BRAIN TUMOR DETECTION AND SEGMENTATION USING MULTISCALE INTUITIONISTIC FUZZY ROUGHNESS IN MR IMAGES

    The magnetic resonance imaging technique is mostly used for visualizing and detecting brain tumor, which requires accurate segmentation of brain MR images into white matter, gray matter, cerebrospinal fluid, necrotic tissue, tumor, and edema. But brain image segmentation is a challenging task because of unknown noise and intensity inhomogeneity in brain MR images. This paper proposed a technique for the segmentation and the detection of a tumor, cystic component and edema in brain MR images using multiscale intuitionistic fuzzy roughness (MSIFR). Application of linear scale-space theory and intuitionistic fuzzy image representation deals with noise and intensity inhomogeneity in brain MR images. Intuitionistic fuzzy roughness calculated at proper scale is used to find optimum valley points for segmentation of brain MR images. The algorithm is applied to the real brain MR images from various hospitals and also to the benchmark set of the synthetic MR images from brainweb. The algorithm segments synthetic brain MR image into three regions, gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) and also separates tumor, cystic component and edema accurately in real brain MR images. The results of segmentation of proposed algorithm for synthetic images are compared with nonlocal fuzzy c-means (NLFCM), rough set based algorithms, intervalued possibilistic fuzzy c-means (IPFCM), robust modified Gaussian mixture model with rough set (RMGMMRS) and three algorithms, recursive bias corrected possibilistic fuzzy c-means (RBCPFCM), recursive bias corrected possibilistic neighborhood fuzzy c-means (RBCPNFCM) and recursive bias corrected separately weighted possibilistic neighborhood fuzzy c-means (RBCSPNFCM). The quantitative and qualitative evaluation demonstrates the superiority of the proposed algorithm.