Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Classification of Visually Evoked Potential EEG Using Hybrid Anchoring-based Particle Swarm Optimized Scaled Conjugate Gradient Multi-Layer Perceptron Classifier

    Brain-Computer Interface is an emerging field that focuses on transforming brain data into machine commands. EEG-based BCI is widely used due to the non-invasive nature of Electroencephalogram. Classification of EEG signals is one of the primary components in BCI applications. Steady-State Visually Evoked Potential (SSVEP) paradigms have gained importance because of lesser training time, higher precision, and improved information transfer rate compared to P300 and motor imagery paradigms. In this paper, a novel hybrid Anchoring-based Particle Swarm Optimized Scaled Conjugate Gradient Multi-Layer Perceptron classifier (APS-MLP) is proposed to improve the classification accuracy of SSVEP five classes viz. 6.66, 7.5, 8.57, 10 and 12 Hz, signals. Scaled Conjugate Gradient descent anchors the initial position of Particle Swarm Optimization. The best position, Pbest, of each particle initializes an SCG-MLP, the accuracy of APS-MLP is obtained by averaging the accuracies of each SCG-MLP. The proposed method is compared with standard classifiers namely, k-NN, SVM, LDA and MLP. In which, the proposed algorithm achieves improved training and testing accuracies of 88.69% and 95.4% respectively, which is 12–15% higher than the standard EEG-based BCI classifiers. The proposed algorithm is robust, with a Cohen’s kappa coefficient of 0.96, and will be used in applications such as motion control and improving the quality of life for people with disabilities.