Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    INTERNAL AND EXTERNAL NEURAL SYNCHRONIZATION DURING CONSCIOUS PERCEPTION

    Binocular rivalry is a useful experimental paradigm to investigate aspects of neocortical dynamics related to conscious perception. Frequency-tagged EEG responses to a sine-flickered visual stimulus were contrasted between episodes of perceptual dominance, i.e. conscious perception of that stimulus and perceptual nondominance, i.e. conscious perception of a rival stimulus presented at a different frequency to the other eye. The amplitude and phase distribution of the stimulus-evoked steady-state responses depended on the stimulus modulation frequency, consistent with the presence of global resonance phenomena. At the apparent global resonance frequency, conscious perception of the stimulus modulated the steady-state response over the entire array of electrodes. These effects were significant at electrodes far from the primary visual cortex, including temporal, central, and frontal electrodes. The phase structure of the steady-state response was also investigated using coherence measures. Coherence between electrodes mostly increased during conscious perception of the stimulus. Analysis of partial coherence, removing stimulus-locked responses, indicated that synchronization of each signal to the stimulus flicker at each electrode and synchronization between signals that vary with respect to the stimulus flicker at each electrode both contribute to observed increases in coherence during conscious perception. These distinct modes of synchronization may reflect two different physiological mechanisms by which sensory signals are integrated across the cerebral cortex during conscious experience.