Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    A novel method of image denoising based on 2D dual-tree DWT and SWT

    In this paper, we propose a new image denoising technique which consists in applying a stationary wavelet transform (SWT)-based image denoising technique, in the domain of 2D dual-tree discrete wavelet transform (DWT). In fact, this proposed technique consists first of applying the 2D dual-tree DWT to the noisy image. Then, the noisy wavelet coefficients obtained from this application are denoised by applying to each of them, a SWT-based image denoising technique. Finally, the denoised image is reconstructed by applying the inverse of the 2D dual-tree DWT to the obtained denoised wavelet coefficients. For applying this SWT-based image denoising technique, we use the soft thresholding, the Daubechies 4 as the mother wavelet, and the decomposition level is equal to 5. The performance of this image denoising technique proposed in this work is proven by its comparison to three other denoising techniques existing in the literature. These three techniques are the denoising technique based on the soft thresholding in the SWT domain, the image denoising technique based on soft thresholding in the domain of 2D dual-tree DWT and the image denoising approach using deep neural network. All the previously mentioned techniques, including our proposed denoising approach, are applied to a number of noisy images, and the obtained results are in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). Those results show that this proposed denoising technique outperforms the other three denoising techniques used in this evaluation.