Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    DESIGN, IMPLEMENTATION AND TESTING OF A FLEXIBLE FULLY-DIGITAL TRANSPONDER FOR LOW-EARTH ORBIT SATELLITE COMMUNICATIONS

    This paper presents a flexible Telemetry, Tracking & Command (TT&C) transponder for Earth Observation (EO) small satellites. The proposed device adds to the state-of-the-art EO TT&C transponders the possibility of scientific data transfer thanks to the high downlink data-rate (up to 40 Mbps) and in-flight reconfigurability via Telecomand (TC). The integration of these features in one single device represents a considerable optimization in terms of mass budget, which is important for EO small satellites. Furthermore, in-flight reconfigurability of communication parameters via TC is important for in-orbit link optimization, which is especially useful for Low-Earth Orbit (LEO) satellites where visibility can be as short as few hundreds of seconds.

    The proposed transponder is a digital radio unit working at 70 MHz intermediate frequency (IF). A new custom and configurable hardware accelerator was developed to cover intensive radio DSP functions at IF. The custom hardware is integrated in a single FPGA with a space-compliant processor core, for control, configuration and interface with the other satellite subsystems.

    All the quantization parameters were fine-tailored to reach a trade-off between hardware complexity and implementation loss (IL). The IF RX/TX ports require eight bits and seven bits, respectively. The IL is 0.5 dB at BER = 10-5 for the RX chain.

    A system proof-of-concept was implemented on the Xilinx Virtex 6 VLX75T-FF484 FPGA. The total device occupation is 82%. The power consumption of the design fitted in FPGA is less than 2 W. The power consumption of the whole demonstrator board is less than 9 W.