Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    APPROXIMATE NEXT-TO-LEADING ORDER AND NEXT-TO-NEXT-TO-LEADING ORDER CORRECTIONS

    For processes involving structure functions and/or fragmentation functions, arguments that over a range of a proper kinematic variable, there is a part that dominates the next-to-leading order (NLO) corrections, are briefly reviewed. The arguments are tested against more recent NLO and in particular complete next-to-next-to-leading order (NNLO) calculations. A critical examination of when these arguments may not be useful is also presented.

  • articleNo Access

    A UNIFIED APPROACH TO NNLO SOFT AND VIRTUAL CORRECTIONS IN ELECTROWEAK, HIGGS, QCD, AND SUSY PROCESSES

    I present a unified approach to calculating the next-to-next-to-leading order (NNLO) soft and virtual QCD corrections to cross-sections for electroweak, Higgs, QCD, and SUSY processes. I derive master formulas that can be used for any of these processes in hadron–hadron and lepton–hadron collisions. The formulas are based on a unified threshold resummation formalism and can be applied to both total and differential cross-sections for processes with either simple or complex color flows and for various factorization schemes and kinematics. As a test of the formalism, I rederive known NNLO results for Drell–Yan and Higgs production, deep inelastic scattering, and W+γ production, and I obtain expressions for several two-loop anomalous dimensions and other quantities needed in next-to-next-to-leading-logarithm (NNLL) resummations. I also present new results for the production of supersymmetric charged Higgs bosons; massive electroweak vector bosons; photons; heavy quarks in lepton–hadron and hadron–hadron collisions and in flavor-changing neutral current processes; jets; and squarks and gluinos. The NNLO soft and virtual corrections are often dominant, especially near threshold, and they reduce the scale dependence of the cross-section. Thus, a unified approach to these corrections is important in the search for new physics at present and future colliders.