Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Non-equilibrium thermodynamics of quantum bipartite system

    In quantum information and quantum computation, a bipartite system provides a basic few-body framework for investigating significant properties of thermodynamics and statistical mechanics. A Hamiltonian model for a bipartite system is introduced to analyze the important role of interaction between bipartite subsystems in quantum non-equilibrium thermodynamics. We illustrate discrimination between such quantum thermodynamics and classical few-body non-equilibrium thermodynamics. By proposing a detailed balance condition of the bipartite system, we generally investigate the properties of the entropy and heat of our model, as well as the relation between them.