Sn precursor layer was evaporated on a glass substrate by an electron-beam evaporation method and followed by selenization using Se powder. SnSe film was successfully prepared by adjusting the selenization temperature and selenization time. The phase, microstructure and optical properties of the SnSe films were studied by X-ray diffraction, Raman spectroscopy, Scanning Electron Microscopy, and UV-Vis-NIR spectrophotometer. The results demonstrated that the pure phase polycrystalline SnSe films with a band gap of 0.93 eV could be prepared by selenizing at 450∘C for 60 min. Under the irradiation of a 980 nm laser with a power of 2 mW/cm2, photoelectric response characteristics of the SnSe films were tested, and the response time and recovery time of the prepared film were 62 ms and 80 ms, respectively, indicating that the SnSe film had a large application prospect in near-infrared light detection.