Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    BIDIFFERENTIAL CALCULI, BICOMPLEX STRUCTURE AND ITS APPLICATION TO BIHAMILTONIAN SYSTEMS

    In this exposition, we study the relationship between the bihamiltonian formalism of completely integrable systems using the bidifferential calculi introduced by Dimakis and Müller-Hoissen in [1] and the bihamiltonian formulation of integrable systems with a finite number of degrees of freedom via the Frölicher–Nijenhuis geometry. This pair of bidifferetial operators are used to construct alternative Lie algebroids as shown by Camacaro and Carinena. We find its connection to Finsler geometry. We also find the dispersionless integrable hierarchies using the bidifferential ideals. Finally, we lay out its connection to Gelfand–Zakharevich bihamiltonian geometry.