Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Er3+ and Yb3+ co-doped CaBi2Ta2O9 (CBT)-based bismuth layered-structure oxides were synthesized by a simple solid-state reaction method. Their up-conversion (UC) luminescence, dielectric and ferroelectric properties were investigated. Two strong green emission bands centered at 526 and 547 nm and a weak red emission band centered at 658 nm were obtained under a 980 nm laser excitation at room temperature. These emission bands originated from the radiative relaxation of Er3+ from 2H11/2, 4S3/2, and 4F9/2 levels to the ground state 4I15/2, respectively. At the meantime, the fluorescence intensity ratio (FIR) variation of two green UC emissions at 526 and 547 nm has been studied as a function of temperature in the range of 153–603 K. The maximum sensor sensitivity obtained was 39 × 10-4 K-1 at 590 K, which indicated that Er3+/Yb3+ co-doped CBT ceramic is a promising candidate for applications in optical high temperature sensor.
The purpose of this study is to identify and quantify the difference in detections of a subsurface target from a subsurface sensor source between range-independent and range-dependent versions of the same acoustic propagation model. Environmental data were pulled from open source databases to provide an application for the comparison and using novel measures of merit, the authors were able to quantify the difference in detection performance between models. This study suggests that provided multiple types of environments are considered, it is possible to use a range-independent model to give good approximations to the accuracy of detections, one would achieve using a full range-dependent sound propagation model.