Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The results of some simulated seismic load tests on reinforced concrete one-way interior and exterior beam-column joints with substandard reinforcing details typical of buildings constructed in New Zealand before the 1970s are described. The tests were conducted using both deformed and plain round longitudinal reinforcement. The interior beam-column joint cores lacked transverse reinforcement and the longitudinal bars passing through the joint core were poorly anchored. The exterior beam-column joint units contained very little transverse reinforcement in the members and in the joint core. In one exterior beam-column joint unit the beam bar hooks were not bent into the joint core. That is, the hooks at the ends of the top bars were bent up and the hooks at the ends of the bottom bars were bent down. This anchorage detail was common in many older buildings constructed before the 1970s. In the other exterior beam-column joint unit the hooks at the ends of the bars were bent into the joint core as in current practice. The improvement in performance of the joint with beam bars anchored according to current practice is demonstrated. In addition, tests were conducted on interior joints with lap splices in the beam longitudinal reinforcement bars near the column face. The tests were conducted using both deformed and plain round longitudinal reinforcement. Tests were also conducted on columns with plain round bar longitudinal reinforcement and inadequate transverse reinforcement.
The reinforcing details were close to identical to those in an existing seven storey reinforced concrete building that was designed and built in New Zealand in the late 1950s.
The test results give an indication of the performance of beam-column joints and members with the above now out-of-date reinforcing details.
The test results reported are a summary of results reported in a number of publications written since 1994.
The research work presented in this paper deals with the seismic assessment of hollow bridge piers strengthened with fibre-reinforced polymer (FRP). The scope of the strengthening is to overcome some common deficiencies derived from the use of non-seismic design rules, which can often lead to inadequate response when operating in cyclic loading. The strengthening design was studied by means of a parametric analysis considering different fibres and geometrical parameters applied to typical case studies. Quasi-static cyclic tests were performed on five 1:4 scaled piers designed according to old non-seismic Italian codes and strengthened according to the previous analytical study. Efficiency of FRP strengthening was evaluated by comparing the experimental results with those obtained in a previous experimental research performed on similar non-strengthened specimens. Base shear versus lateral deflection curves, dissipated energy and collapse mechanisms comparison shows the achievable effectiveness once the debonding risk has been overcome.
The paper describes the formulation of a non-linear, two-dimensional beam finite element with bending, shear and axial force interaction for the static and dynamic analysis of reinforced concrete structures. The hysteretic behaviour of "squat" reinforced concrete members, in which the interaction between shear and flexural deformation and capacity is relevant for the overall structural performance, is emphasised. The element is of the distributed inelasticity type; section axial-flexural and shear behaviours are integrated numerically along the element length using a new equilibrium-based approach. At section level a "hybrid" formulation is proposed: the axial-flexural behaviour is obtained using the classic fibre discretisation and the plane sections remaining plane hypothesis, the shear response instead is identified with a non-linear truss model and described with a hysteretic stress-strain relationship. The latter contains a damage parameter, dependent on flexural ductility, that provides interaction between the two deformation mechanisms. The element has been implemented into a general-purpose finite element code, and is particularly suitable for seismic time history analyses of frame structures. Analytical results obtained with the model are compared with recent experimental data.