Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Let (X, 0) be the germ of a normal space of dimension n+1 with an isolated singularity at 0 and let f be a germ of holomorphic function with an isolated regularity at 0. We prove that the meromorphic extension of the current
We consider the singuralities of 2-dimensional moduli spaces of semi-stable sheaves on k3 surfaces. We show that the moduli space is normal, in particular the siguralities are rational double points. We also describe the exceptional locus on the resolution in terms of exceptional sheaves.
We provide a sketch of the GIT construction of the moduli spaces for the three classes of connections: the class of meromorphic connections with fixed divisor of poles D and its subclasses of integrable and integrable logarithmic connections. We use the Luna Slice Theorem to represent the germ of the moduli space as the quotient of the Kuranishi space by the automorphism group of the central fiber. This method is used to determine the singularities of the moduli space of connections in some examples.
The stable singularities of differential map germs constitute the main source of studying the geometric and topological behavior of these maps. In particular, one interesting problem is to find formulae which allow us to count the isolated stable singularities which appear in the discriminant of a stable deformation of a finitely determined map germ. Mond and Pellikaan showed how the Fitting ideals are related to such singularities and obtain a formula to count the number of ordinary triple points in map germs from ℂ2 to ℂ3, in terms of the Fitting ideals associated with the discriminant.
In this article we consider map germs from (ℂn+m, 0) to (ℂm, 0), and obtain results to count the number of isolated singularities by means of the dimension of some associated algebras to the Fitting ideals. First in Corollary 4.5 we provide a way to compute the total sum of these singularities. In Proposition 4.9, for m = 3 we show how to compute the number of ordinary triple points. In Corollary 4.10 and with f of co-rank one, we show a way to compute the number of points formed by the intersection between a germ of a cuspidal edge and a germ of a plane.
Furthermore, we show in some examples how to calculate the number of isolated singularities using these results.
These are the notes for lectures given at the Sanya winter school in complex analysis and geometry in January 2016. In Sec. 1, we review the meaning of Ricci curvature of Kähler metrics and introduce the problem of finding Kähler–Einstein metrics. In Sec. 2, we describe the formal picture that leads to the notion of K-stability of Fano manifolds, which is an algebro-geometric criterion for the existence of a Kähler–Einstein metric, by the recent result of Chen–Donaldson–Sun. In Sec. 3, we discuss algebraic structure on Gromov–Hausdorff limits, which is a key ingredient in the proof of the Kähler–Einstein result. In Sec. 4, we give a brief survey of the more recent work on tangent cones of singular Kähler–Einstein metrics arising from Gromov–Hausdorff limits, and the connections with algebraic geometry.
Let X be an elliptic surface over P1 with κ(X)=1, and M=M(c2) be the moduli scheme of rank-two stable sheaves E on X with (c1(E),c2(E))=(0,c2) in Pic(X)×ℤ. We look into defining equations of M at its singularity E, partly because if M admits only canonical singularities, then the Kodaira dimension κ(M) can be calculated. We show the following:
Differential geometry, especially the use of curvature, plays a central role in modern Hodge theory. The vector bundles that occur in the theory (Hodge bundles) have metrics given by the polarizations of the Hodge structures, and the sign and singularity properties of the resulting curvatures have far reaching implications in the geometry of families of algebraic varieties. A special property of the curvatures is that they are 1st order invariants expressed in terms of the norms of algebro-geometric bundle mappings. This partly expository paper will explain some of the positivity and singularity properties of the curvature invariants that arise in the Hodge theory with special emphasis on the norm property.