Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Effect of oxygen components of fuels on exhaust emissions has been investigated by applying an indirect injection (IDI) diesel engine. This research analyzed variation and/or difference of the engine performance and exhaust emission characteristics of the IDI diesel engine by fueling the commercial diesel fuel and four different mixed ratios of oxygenated blended fuels. Effect of the exhaust gas recirculation (EGR) method was analyzed on the NOx emission characteristics. Ethylene glycol mono-n-butyl ether (EGBE) contains 27% of oxygen components in itself, and it is a kind of effective oxygenated fuel of mono-ether group. Smoke emission from the EGBE was reduced remarkably relative to the commercial diesel fuel. The EGBE can supply oxygen components sufficiently at higher diesel engine loads and speeds. It was found that a simultaneous reduction of the smoke and the NOx was achieved with the oxygenated fuel (10 vol-%) and the cooled EGR method (10%).
Biodiesel as alternative energy source of the traditional petroleum fuels has increased interest, because environmental pollution based exhaust emissions from vehicle became serious. The advantage of biodiesel produced from esterification of vegetable and animal oils can be used without the modification of existing diesel engine, but glycerin is generated by production process. In this study, the usability of non-esterification biodiesel as an alternative fuel was investigated in an indirect injection diesel engine. The non-esterification biodiesel has not generated glycerin in esterification process and reduced the 20 percent of cost because it has not used methanol in the production process. Experiments were conducted by using the 5, 10 and 20 percentage of biodiesel and 4 and 8 percentage of biodiesel with 1 and 2 percentage of WDP in baseline diesel fuel. The smoke emission of biodiesel was reduced in comparison with diesel fuel, but power, torque and brake specific energy consumption was similar to diesel fuel.