Loading [MathJax]/jax/output/CommonHTML/jax.js
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Numerical experiments on the PF1000 plasma focus device operated with nitrogen and oxygen gases

    The indicative values of reduced Pease–Braginskii (P–B) currents are estimated for a nitrogen and oxygen plasma focus. The values of depletion times indicate that in N2 and O2 with estimated 3–4% of pinch energy radiating away over the duration of the pinch, we may expect some cooling effects leading to small reductions in radius ratio. In other gases with higher atomic number, the pinch duration is much more than the depletion time, so radiative contraction may be anticipated. The Lee model was employed to study the soft X-ray from PF1000 operated with nitrogen and oxygen. We found nitrogen soft X-ray yield in the water window region of 3.13 kJ, with the corresponding efficiency of 0.9% of the stored energy (E0), while for the oxygen it was found to be Ysxr = 4.9 kJ, with the efficiency of 1.4% E0. The very modest enhancement of compression (radius ratios around 0.1) in the pinches of these two gases gives rise to rather modest pinch energy densities (PEDs) under 109 Jm3. This is in contrast to Kr or Xe where it had been shown that the radiative collapse leads to radius ratios of 0.007 and 0.003, respectively, with PEDs going to large values considerably exceeding 1012 Jm3.