Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    USING CLASSIFICATION TREES FOR SOFTWARE QUALITY MODELS: LESSONS LEARNED

    High software reliability is an important attribute of high-assurance systems. Software quality models yield timely predictions of quality indicators on a module-by-module basis, enabling one to focus on finding faults early in development. This paper introduces the Classification And Regression Trees (CART) a algorithm to practitioners in high-assurance systems engineering. This paper presents practical lessons learned on building classification trees for software quality modeling, including an innovative way to control the balance between misclassification rates. A case study of a very large telecommunications system used CART to build software quality models. The models predicted whether or not modules would have faults discovered by customers, based on various sets of software product and process metrics as independent variables. We found that a model based on two software product metrics had comparable accuracy to a model based on forty product and process metrics.

  • articleNo Access

    DATA MINING FOR PREDICTORS OF SOFTWARE QUALITY

    "Knowledge discovery in data bases" (KDD) for software engineering is a process for finding useful information in the large volumes of data that are a byproduct of software development, such as data bases for configuration management and for problem reporting. This paper presents guidelines for extracting innovative process metrics from these commonly available data bases. This paper also adapts the Classification And Regression Trees algorithm, CART, to the KDD process for software engineering data. To our knowledge, this algorithm has not been used previously for empirical software quality modeling. In particular, we present an innovative way to control the balance between misclassification rates. A KDD case study of a very large legacy telecommunications software system found that variables derived from source code, configuration management transactions, and problem reporting transactions can be useful predictors of software quality. The KDD process discovered that for this software development environment, out of forty software attributes, only a few of the predictor variables were significant. This resulted in a model that predicts whether modules are likely to have faults discovered by customers. Software developers need such predictions early in development to target software enhancement techniques to the modules that need improvement the most.