Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    A GENETIC ALGORITHM FOR IMPROVING ACCURACY OF SOFTWARE QUALITY PREDICTIVE MODELS: A SEARCH-BASED SOFTWARE ENGINEERING APPROACH

    In this work, we present a genetic algorithm to optimize predictive models used to estimate software quality characteristics. Software quality assessment is crucial in the software development field since it helps reduce cost, time and effort. However, software quality characteristics cannot be directly measured but they can be estimated based on other measurable software attributes (such as coupling, size and complexity). Software quality estimation models establish a relationship between the unmeasurable characteristics and the measurable attributes. However, these models are hard to generalize and reuse on new, unseen software as their accuracy deteriorates significantly. In this paper, we present a genetic algorithm that adapts such models to new data. We give empirical evidence illustrating that our approach out-beats the machine learning algorithm C4.5 and random guess.