Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    LOCAL CONSTRUCTION AND COLORING OF SPANNERS OF LOCATION AWARE UNIT DISK GRAPHS

    We look at the problem of coloring locally specially constructed spanners of unit disk graphs. First we present a local approximation algorithm for the vertex coloring problem in Unit Disk Graphs (UDGs) which uses at most four times as many colors as an optimal solution requires. Next we look at the colorability of spanners of UDGs. In particular we present a local algorithm for constructing a 4-colorable spanner of a unit disk graph. The output consists of the spanner and the 4-coloring. The computed spanner also has the properties that it is planar, the degree of a vertex in the spanner is at most 5 and the angles between two edges are at least π/3. By enlarging the locality distance (i.e. the size of the neighborhood which a vertex has to explore in order to compute its color) we can ensure the total weight of the spanner to be arbitrarily close to the weight of a minimum spanning tree.

    We prove that a local algorithm cannot compute a bipartite spanner of a unit disk graph and therefore our algorithm needs at most one color more than any local algorithm for the task requires. Moreover, we prove that there is no local algorithm for 3-coloring UDGs or spanners of UDGs, even if the 3-colorability of the graph (or the spanner respectively) is guaranteed in advance.