Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

Bestsellers

Lectures of Sidney Coleman on Quantum Field Theory
Lectures of Sidney Coleman on Quantum Field Theory

edited by Bryan Gin-ge Chen, David Derbes, David Griffiths, Brian Hill, Richard Sohn and Yuan-Sen Ting
Facts and Mysteries in Elementary Particle Physics
Facts and Mysteries in Elementary Particle Physics

Revised Edition
by Martinus Veltman

 

  • articleNo Access

    DIRICHLET CASIMIR ENERGY FOR A SCALAR FIELD IN A SPHERE: AN ALTERNATIVE METHOD

    In this paper we compute the leading order of the Casimir energy for a free massless scalar field confined in a sphere in three spatial dimensions, with the Dirichlet boundary condition. When one tabulates all of the reported values of the Casimir energies for two closed geometries, cubical and spherical, in different space–time dimensions and with different boundary conditions, one observes a complicated pattern of signs. This pattern shows that the Casimir energy depends crucially on the details of the geometry, the number of the spatial dimensions, and the boundary conditions. The dependence of the sign of the Casimir energy on the details of the geometry, for a fixed spatial dimensions and boundary conditions has been a surprise to us and this is our main motivation for doing the calculations presented in this paper. Moreover, all of the calculations for spherical geometries include the use of numerical methods combined with intricate analytic continuations to handle many different sorts of divergences which naturally appear in this category of problems. The presence of divergences is always a source of concern about the accuracy of the numerical results. Our approach also includes numerical methods, and is based on Boyer's method for calculating the electromagnetic Casimir energy in a perfectly conducting sphere. This method, however, requires the least amount of analytic continuations. The value that we obtain confirms the previously established result.